
Programming in .NET 
Microsoft Development Center Serbia programming course 

 

Lesson 6 - LINQ 

 

LINQ, or Language Integrated Query as the full name of the feature stands, is a new and very powerful way 

to work with certain data types in C# programs. They allow the programmer to use declarative model of 

programming. Instead of explicitly saying to the compiler what needs to happen in order to produce some 

result, the programmer effectively says what is the result of the operation he is interested in, and leaves the 

compiler to find the best way to make it happen. 

LINQ consists of a set of query expressions that are used mostly on sequences. You've covered sequences in 

previous lessons when talking about iterators. For the purposes of LINQ, a sequence is anything that 

implements IEnumerable or its generic cousin IEnumerable<T>. This means that LINQ can be used on 

any generic collection type within a C# program. 

LINQ exists in several distinct "flavors" within the .NET Framework. First, most common, is LINQ to Objects. 

This flavor of LINQ works with sequences that are in memory, and usually use delegates to perform its work. 

Second most common is LINQ to Entities or LINQ to SQL. This flavor works by abstracting the data stored 

within a relational database in an object model, and then performs translation into Structured Query 

Language (SQL).  

Before we dive deeper into LINQ territory, there are a couple of C# features that need to be covered, most 

importantly anonymous types and type inference, as well as expression trees. 

Anonymous types provide a convenient way to encapsulate a set of read-only properties into a single object 

without having to explicitly define a type first. The type name is generated by the compiler and is not 

available at the source code level. You create anonymous types by using the new operator together with an 

object initializer. 

 

 

// define a family member by his/her name and age 

var result = new { Name = "Merry", Age = 12 }; 

  

// accessing properties is the same as with any other object 

Console.WriteLine(result.Name); // prints out: Merry 

  

http://msdn.microsoft.com/en-us/library/vstudio/51y09td4.aspx


// it can be used in implicitly typed arrays as well 

// so let's define a whole family 

 var family = new []{  

     new { Name = "Merry", Age = 12 },  

     new { Name = "Brad", Age = 15 },  

     new {  Name = "Vivian", Age = 34 },  

     new { Name = "John", Age = 35 }  

 }; 

 

  

The figure below outlines the uses you can have from using anonymous types.  

  

  

 

  

  

Working with anonymous types means that the programmer doesn't know the actual type of the variable 

that will contain the anonymous type; the type will be generated at compile type. In order to overcome this 

problem, C# has another feature which is called typed inference. 

Type inference, also called implicitly typed local variables, allows the programmer to let the complier deduce 

the type of any given variable by looking at the right-hand side of the assignment operation. Looking at the 

example above: 

 



// define a family member by his/her name and age 

var result = new { Name = "Merry", Age = 12 }; 

 

 

We see the var keyword being used before the result identifier. This will instruct to complier to deduce the 

actual type of the variable by evaluating the expression on the right side of the assignment. If course, this can 

be used for any type, not just anonymous ones. Consider: 

 

// the following two statements are identical  

var result = "Hello World!"; 

string result = "Hello World!"; 

  

// of course, we can use more complex types 

public class ClassA { public Tuple<int,string> PropA {get;set;} } 

  

var result = new ClassA(); 

result.PropA.Item1 = 1;  

result.PropA.Item2 = "John"; 

 

 
Expression trees in C# allow us to treat a piece of C# code as data, not code. This concept may sound strange, 

however it is really quite simple and it has been around for a while in various different languages. One of the 

most popular languages used for web development these days, JavaScript, had an eval() function from its 

first version, which allowed a JavaScript programmer to define a string containing some code and pass it to 

the eval() function at some point in the program's workflow for execution. 

Expression trees do the same for C# in a very high-level and abstract way that makes it more of a joy to work 

with. C# compiler provides a built-in way of converting lambdas into expression trees, as well as a 

programmatic API to do so. Let us take a look at the latter first. 

As the name suggests, they’re trees of objects, where each node in the tree is an expression in itself. 

Different types of expressions represent the different operations that can be performed in code: binary 

operations, such as addition; unary operations, such as taking the length of an array; method calls; 

constructor calls; and so forth.  The System.Linq.Expressions namespace contains the various classes 

that represent expressions. All of them derive from the Expression class, which is abstract and mostly 

consists of static factory methods to create instances of other expression classes. The simplest possible 

example is defining an addition of two integer constants: 

 
 

Expression firstArg = Expression.Constant(2); 

Expression secondArg = Expression.Constant(3); 

Expression add = Expression.Add(firstArg, secondArg); 

Console.WriteLine(add); 

 

  
The graph below shows the tree in a graphical way. 



 
The above example become s more useful and impressive when we see that expression trees can be used as 

building blocks to create, and then compile and execute a delegate (lambda expression): 

 
 

Expression firstArg = Expression.Constant(2); 

Expression secondArg = Expression.Constant(3); 

Expression add = Expression.Add(firstArg, secondArg); 

Expression.Lamda<Func<int>> lambda = Expression.Lambda<Func<int>>(add); 

Func<int> compiled =  lambda.Compile(); 

Console.WriteLine(compiled()); 

 

  
Though powerful and impressive, this way of working with expression trees is prone to errors and somewhat 

long in the tooth. Luckily, the C# compiler can do a lot of the "heavy lifting" for us. Let's use the compiler to 

do most of the tedious work above: 

 
 

Expression<Func<int>> lambda = () => 2+3; 

Func<int> compiled = lambda.Compile(); 

// Outputs 5 to the console 

Console.WriteLine(compiled()); 

 

 

Of course, these are simple examples. You can have much more complex ones, as nearly any lambda 

expression can be converted, either programmatically or by compiler, into an expression tree. There is one 

important caveat there: the lambda expression must evaluate into a single expression. That means that you 

cannot convert lambdas with a body (multi-statement lambdas).  

  



Using LINQ query expressions 
Before we go into the details of the LINQ operators and expressions, we need to define a data source we will 

work with. The code sample below shows off two sample types, Defect and User, as well as a sample class 

SampleData that exposes two properties that are sequences.  

  

 

// Defect 

public class Defect { 

      public int ID {get; set; } 

      public string Title {get; set; } 

      public int Severity {get; set; } 

      public User User {get; set; } 

} 

  

// User 

public class User { 

      public int ID {get; set; } 

      public string Name {get; set; } 

} 

  

// Sample defects 

public class SampleData { 

      public List<Defect> Defects {get; set; } // all defects 

      public List<User> Users {get; set; } // all users 

  

      public SampleData()  

      { 

            this.Defects = new List<Defect> {  

                  new Defect { ID = 1, Title = "Defect 1", Severity= 0 },  

                  new Defect { ID = 2, Title = "Defect 2", Severity=4 } }; 

 

            this.Users = new List<User> { new User { ID = 1, Name = "Test User" } }; 

      } 

} 

  

 

Consider the following LINQ expression that uses the data source we defined earlier: 

 

var result = from defect in SampleData.Defects 

             select defect.Title; 

 

  

This query will simply return each element from the sequence (called a source) into a new sequence named 

result in the above example. Each query expression in LINQ starts in the same way, by defining a source 

sequence and a range variable. In the above example, a range variable is the defect variable. It will exist 

inside the query expression, and is an important concept because it is used further in other LINQ operators. 

The source is any sequence that LINQ can stream through.  

All of the query expressions above will be translated into method calls. These methods are just extension 

methods that are implemented on top of IEnumerable<T>. That means that any sequence will have 



them, provided that appropriate namespace is imported. The above query expression will be rewritten into 

the following series of method calls by the compiler: 

 

var result = SampleData.Defects.Select(defect => defect); 

 

 

The parameter to the Select method (LINQ operator) will be a lambda expression that will encapsulate the 

range variable and determine its type. This way, we can use it to filtering, aggregations, joins between 

sequences etc.  

 

One aspect of LINQ that is important to note at the outset is deferred execution. This means that once the 

query is defined, it will not be executed immediately and no data will be returned immediately. In order to 

execute the query and return data, the resulting sequence needs to be iterated over. This can be done by 

using the foreach operator, or by converting the result into an explicit collection (usually via the ToList() 

or ToArray() methods).  

 

Projections 
 

Projections or returning data from LINQ queries is done using the select expression. This expression gets 

translated into a call to the Select method with a lambda expression that uses the range variable and 

returns certain items or a completely new type (anonymous or otherwise).  

 

// return just the title of the Defect 

var result = from defect in SampleData.Defects 

             select defect.Title; 

 

  

The above example will return a new sequence of strings (IEnumerable<string> to be precise). We can 

also use projections to return completely new types. Let us construct a new type that will have just the ID 

and the Title of the defect: 

 

// return the title of the Defect and the ID 

var result = from defect in SampleData.Defects 

             select new { ID = defect.ID, Title = defect.Title }; 

 

 

It is important to note degenerate queries. For example, the following query expression just selects all the 

defects in the system: 



 

var result = from defect in SampleData.Defects 

             select defect 

 

 

This is known as a degenerate query expression. The compiler deliberately generates a call to Select even 

though it seems to do nothing: 

 

 

SampleData.AllDefects.Select(defect => defect) 

 

 

There’s a big difference between this and using SampleData.AllDefects as a simple expression though. 
The items returned by the two sequences are the same, but the result of the Select method is just the 
sequence of items, not the source itself. The result of a query expression is never the same object as the 
source data, unless the LINQ provider has been poorly coded. This can be important from a data 
integrity point of view—a provider can return a mutable result object, knowing that changes to the 
returned data sequence won’t affect the master even in the face of a degenerate query. 

 

Predicates (filtering) 
 

In order to perform filtering, we use the where query expression. The compiler translates this into a call to 

the Where method with a lambda expression, which uses the appropriate range variable as the parameter 

and the filter expression as the body. The filter expression is applied as a predicate to each element of the 

incoming stream of data, and only those that return true are present in the resulting sequence. Using 

multiple where clauses results in multiple chained Where calls—only elements that match all of the 

predicates are part of the resulting sequence. 

 

// using query expressions, filter the Defects by severity 

var result = from defect in SampleData.Defects 

             where defect.Severity > 1 

             select defect; 

 

// same as above, using methods 

var result2 = SampleData.Defects.Where(defect=>defect.Severity>1).Select(defect=>defect); 

 

  

Another way to return data is to return either the first element that satisfies a certain predicate or just one 

element of the sequence that satisfies a certain predicate.  



 

Grouping and Ordering 
 

Grouping is largely intuitive, and LINQ makes it simple. To group a sequence in a query expression, all you 

need to do is use the group ... by clause.  

  

Ordering is achieved using the orderby operator. The query can be ordered by one or several properties, in 

either ascending or descending order.  

 

 

// order the defects by Severity from highest to lowest 

var result = from defect in SampleData.Defects 

             orderby defect.Severity descending 

             select defect.ID; 

 

foreach (vart item in result){ 

      Console.WriteLine(item); 

} 

 

 

Joining 
 

Joining is one of the concepts that are at the heart of SQL language, and it is one concept that most users of a 

relational database have come across. What it does, in short, is that it joins two sets by matching values of 

certain elements of the set. LINQ joins work in a similar fashion, only they work on sequences instead of 

tables (like a relational store). There are several types of joins in LINQ. We will cover only one, the inner join 

that is closest one to the SQL join. 

Inner joins involve two sequences. One key selector expression is applied to each element of the first 

sequence and another key selector (which may be totally different) is applied to each element of the second 

sequence. The result of the join is a sequence of all the pairs of elements where the key from the first 

element is the same as the key from the second element. Two sequences being joined can be same or 

different; the only thing that must match is that the key selector must result in the same type for both keys.  

 

 

//join sample 

var joined = from user in SampleData.Users 

             join defect  in SampleData.Defects  

             on user.ID equals defect.User.ID 

             select new { user.ID, defect.Title }; 

  

foreach (var item in joined) { 



      Console.WriteLine("{0}\t{1}", item.ID, item.Title); 

} 

 

  

Using LINQ to SQL 
 

In order to use LINQ to SQL, we need to define a database and some data in it. To make matters simple, we 

will assume the same schema (shape of the data) as our examples so far. The database has one table called 

Defects, and it looks like below: 

 

  

To work with this database from LINQ to SQL, we need to define a data context first, and then a type that 

will represent our table in the code. We can use the same type we've used so far. Data context in this sense is 

a gate towards the database; it will expose sequences that represent tables as properties, and will keep track 

of changes to the objects so it can later update the data. All of this is beyond the scope of this lesson; we will 

use LINQ to SQL to illustrate the translation of LINQ query expressions into different languages, in this case 

SQL language.  

Let us revisit the previous example of finding all of the defects with Severity higher than 1: 

 

 

// note that we are using data context here  

var result = from defect in dataContext.Defects 

             where defect.Severity > 1 

             select defect; 

  

// write out results 

foreach (Defect item in result){ 

      Console.WriteLine(item.Title); 

} 

 

  

It pays to draw closer attention to what is happening here. In the example above, the query looks similar, if 

not exactly the same as in previous examples. However, the LINQ to SQL implementation of the where 

operator will not "simply" take the lambda expression passed in and apply it to the sequence. First of all, 



there is no sequence yet; it first needs to connect to the database to get the data. However, pulling this data 

into the working memory could be potentially highly ineffective as it cannot know the size of the final data 

set. Also, relational store (Microsoft SQL Server in this case) have their own query language, which means 

that the predicate can be pushed to the data store for evaluation.  

 

In order to do this, the Where method in LINQ to SQL does not take as a parameter a 

Func<bool,TSource>  delegate, but rather an Expression of type 

Expression<Func<bool,TSource>>. Treating programming code as data here allows the LINQ to SQL 

to parse the Expression, and then translate the encapsulated predicate into an equivalent SQL statement and 

then send that to the server. In this, rather simple, case, the resulting SQL statement will be 

 

SELECT * FROM Defects WHERE Severity > 1 

 

 

This workflow is the same for more complex operators as well. Let us take a look at the join operator in LINQ. 

For this, we will need to add another table to the database that will be tied to the Defect one. Again, in order 

to avoid complexity, I will add a table for the type we are already using within code. The diagram is shown 

below.  

 
  

The table Users will be accessible as a sequence off the data context, similar to the Defects sequence. Let us 

see two ways in which we can perform a join.  

First, consider the explicit join: 

      var result = from defect in dataContext.Defects 

                   join user in dataContext.Users on defect.User_ID equals user.ID 

                   select new { defect.Title, defect.User.Name }; 

  

      // show the generated SQL statement on standard output  

      dataContext.Log = Console.Out; 

  

      foreach (var item in result) { 

            Console.WriteLine(item); 

      } 

 



This join looks a lot like the one we did with collections (in memory). We can see the SQL statement that was 

generated by this operation: 

 

SELECT [t0].[Title], [t2].[Name]  

FROM [dbo].[Defects] AS [t0]  

INNER JOIN [dbo].[Users] AS [t1] ON [t0].[User_ID] = [t1].[ID]  

INNER JOIN [dbo].[Users] AS [t2] ON [t2].[ID] = [t0].[User_ID] 

  
There is also an implicit join: 
      var result = from defect in dataContext.Defects 

                   select new { defect.Title, defect.User.Name }; 

  

      // show the generated SQL statement on standard output  

      dataContext.Log = Console.Out; 

  

      foreach (var item in result) { 

            Console.WriteLine(item); 

      } 

 

The difference here is staggering. It is only one line. We have omitted the explicit join operator and just left 

the projection of a property that forms a relationship between these two tables in the database. The same 

code will work, and LINQ to SQL is "smart" enough to realize that it needs a join in order to reach the needed 

data.  

 
SELECT [t0].[Title], [t1].[Name]  

FROM [dbo].[Defects] AS [t0]  

INNER JOIN [dbo].[Users] AS [t1] ON [t1].[ID] = [t0].[User_ID] 

 

Most LINQ "flavors" (also known as "providers") that move away from working with in-memory sequences 

and try to provide query expressions' support on top of other data sources follow this pattern. They work 

with expression trees that they then translate into the needed target language. That language can be 

anything, really. For instance, there is an implementation of LINQ for Active Directory, that is, LDAP servers; it 

will translate most of the LINQ operators into LDAP queries to find the users in directories etc. 

  

Recap 
The purpose of this lesson was to introduce LINQ operators, and to show basic query expressions and 
how to work with them. LINQ greatly simplifies working with sequence-based data in C# program. IT can 
also be used, via its extensibility, to access other data sources that don't necessarily have to reside in 
memory of the currently executing program; we saw a brief example of this with LINQ to SQL. By using 
extensions to C# language like anonymous types, type inference and expression trees LINQ enables the 
programmer to start writing code in a more declarative manner. 
 


